Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Clin Microbiol Infect ; 2022 Nov 11.
Article in English | MEDLINE | ID: covidwho-2252061

ABSTRACT

OBJECTIVES: We aimed to investigate the real-life performance of the rapid antigen test (RAT) in the context of a primary healthcare setting, including symptomatic and asymptomatic individuals that sought diagnostic during a Omicron infection wave. METHODS: We prospectively accessed the performance of the DPP® SARS-CoV-2 Antigen test in the context of an omicron-dominant real-life setting. We evaluated 347 unselected individuals (all-comers) from a public testing center in Brazil, performing the RAT diagnosis at point-of-care with fresh samples. The combinatory result from two distinct RT-qPCR methods was employed as reference and 13 samples with discordant PCR results were excluded. RESULTS: The assessment of the rapid test in 67 PCR-positive and 265 negative samples revealed an overall sensitivity of 80.5% (CI95% = 69.1 - 89.2%), specificity of 99.2% (CI95% = 97.3 - 99.1%) and positive/negative predictive values higher than 95%. However, we observed that the sensitivity was dependent on the viral load (sensitivity in Ct<31 = 93.7%, CI = 82.8 - 98.7%; Ct>31 = 47.4%, CI = 24.4 - 71.1%). The positive samples evaluated in the study were Omicron (BA.1/BA.1.1) by whole-genome sequencing (n=40) and multiplex RT-qPCR (n=17). CONCLUSIONS: Altogether, the data obtained from a real-life prospective cohort supports that the RAT sensitivity for Omicron remains high and underscores the reliability of the test for COVID-19 diagnosis in settings with high disease prevalence and limited PCR testing capability.

2.
J Neurovirol ; 29(2): 180-186, 2023 04.
Article in English | MEDLINE | ID: covidwho-2220283

ABSTRACT

Neurological symptoms have been often reported in COVID-19 disease. In the present study, we evaluated brain damage associated with the increase of serum levels of neurological biomarkers S100B and neuron-specific enolase (NSE) induced by SARS-CoV-2 infection, in a population from Northeastern Brazil. Thirty-six healthy control (G1) individuals and 141 patients with confirmed COVID-19 were enrolled in this study. Positive-COVID-19 patients were divided into two groups according to the severity of illness by the National Institute of Health (NIH) criteria, 76 patients with mild symptoms for COVID-19 and (G2) and 65 with acute respiratory conditions requiring supplemental oxygenation via intensive care unit (ICU) admission (G3). A follow-up study was conducted with 23 patients from G2 14 (D14) and 21 (D21) days after the onset of symptoms. Serum levels of NSE and S100B were measured using the enzyme-linked immunoassay method (ELISA). Results revealed a significant positive association between G3 patients and S100B serum expression (p = 0.0403). The serum levels of NSE were also significantly enhanced in the G3 group compared to the control (p < 0.0001) and G2 group (p < 0.0001). In addition, clinical features such as symptoms and oxygenation status were not correlated with NSE or S100B serum expression. The follow-up study demonstrated a decrease over time (21 days) in NSE serum expression (p < 0.0001). These results suggest that brain damage is followed by acute virus exposure, with no long-term effects. Future work examining COVID-19 recovery will shed light on chronic neurological damage of SARS-CoV-2 infection.


Subject(s)
COVID-19 , Humans , Follow-Up Studies , Brazil , S100 Calcium Binding Protein beta Subunit , SARS-CoV-2 , Biomarkers , Brain
3.
J Virol Methods ; 305: 114529, 2022 07.
Article in English | MEDLINE | ID: covidwho-1773580

ABSTRACT

The maintenance of SARS-Cov-2 RNA samples poses a new challenge for laboratories and researchers. In addition, it is a requirement in order to identify what strain of the new coronavirus is predominant in a region, for instance. Therefore, it is a must to keep the quality and viability of stored RNA to respond to this and other valid questions. In other to test the quality of our samples and storing protocols, we randomly checked RNA samples four different times over one year using a second RT-PCR assay after the first test. The virus genes, N1 and N2, showed no significant increase in the media of the CT value between the first assay and subsequent times with p > 0.05. However, the human RP gene showed differences in the first three times analyzed, but within the acceptable sample cut-off, according to the test manufacturer. After one year, the RNA extracted from human nasopharyngeal specimens are viable to detect the virus SARS-CoV-2 genes with minor changes.


Subject(s)
COVID-19 , Nucleic Acids , COVID-19/diagnosis , Humans , RNA, Viral/analysis , RNA, Viral/genetics , SARS-CoV-2/genetics , Sensitivity and Specificity
4.
Rev Med Virol ; 32(3): e2292, 2022 05.
Article in English | MEDLINE | ID: covidwho-1442040

ABSTRACT

Coronavirus disease 2019 (Covid-19) is an emerging novel respiratory infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that rapidly spread worldwide. In addition to lung injury, Covid-19 patients may develop extrapulmonary symptoms, including cardiac, liver, kidney, digestive tract, and neurological injuries. Angiotensin converting enzyme 2 is the major receptor for the entry of SARS-CoV-2 into host cells. The specific mechanisms that lead to cell death in different tissues during infection by SARS-CoV-2 remains unknown. Based on data of the previous human coronavirus SARS-CoV together with information about SARS-CoV-2, this review provides a summary of the mechanisms involved in cell death, including apoptosis, autophagy, and necrosis, provoked by severe acute respiratory syndrome coronavirus.


Subject(s)
COVID-19 , SARS-CoV-2 , Cell Death , Humans
5.
J Pharm Biomed Anal ; 206: 114392, 2021 Nov 30.
Article in English | MEDLINE | ID: covidwho-1433569

ABSTRACT

The projection of new biosensing technologies for genetic identification of SARS-COV-2 is essential in the face of a pandemic scenario. For this reason, the current research aims to develop a label-free flexible biodevice applicable to COVID-19. A nanostructured platform made of polypyrrole (PPy) and gold nanoparticles (GNP) was designed for interfacing the electrochemical signal in miniaturized electrodes of tin-doped indium oxide (ITO). Oligonucleotide primer was chemically immobilized on the flexible transducers for the biorecognition of the nucleocapsid protein (N) gene. Methodological protocols based on cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and atomic force microscopy (AFM) were used to characterize the nanotechnological apparatus. The biosensor's electrochemical performance was evaluated using the SARS-CoV-2 genome and biological samples of cDNA from patients infected with retrovirus at various disease stages. It is inferred that the analytical tool was able to distinguish the expression of SARS-CoV-2 in patients diagnosed with COVID-19 in the early, intermediate and late stages. The biosensor exhibited high selectivity by not recognizing the biological target in samples from patients not infected with SARS-CoV-2. The proposed sensor obtained a linear response range estimated from 800 to 4000 copies µL-1 with a regression coefficient of 0.99, and a detection limit of 258.01 copies µL-1. Therefore, the electrochemical biosensor based on flexible electrode technology represents a promising trend for sensitive molecular analysis of etiologic agent with fast and simple operationalization. In addition to early genetic diagnosis, the biomolecular assay may help to monitor the progression of COVID-19 infection in a novel manner.


Subject(s)
Biosensing Techniques , COVID-19 , Metal Nanoparticles , Antibodies, Immobilized , Electrochemical Techniques , Electrodes , Gold , Humans , Limit of Detection , Microelectrodes , Polymers , Pyrroles , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL